New Approaches for the Use of the Classical Tools of Scenario Planning




Scenarios. Structural analysis. Cross-impact analysis. Bayesian networks. Morphological analysis.


The future is to be built – is multiple and uncertain. Within the social sciences, scenarios can be defined as a description of a future situation and a course of events that allow move from a primary position toward this future situation. Currently, there is a multiplicity of methods and tools available for building scenarios, including methods of an essentially rationalist approach, as Michel Godet’s method. The purpose of this work is to use the hypothetical-deductive method to reduce, starting from Michel Godet’s Scenario Method and its tools, the complexity of the scenario-building process while maintaining the robustness of the findings. For this purpose, it is proposed two different approaches: (1) to integrate, in one step, the structural analysis and the cross-impact matrix so the first one derives automatically while filling the last one; (2) to use the concept of Bayesian networks as a method to integrate the cross-impact matrix and the morphological analysis. Both approaches aim to reduce the amount of information needed to feed the tools and improve the feedback criteria, resulting in greater flexibility during the process and better holistic view of the system. Scientifically, these approaches open a new field of studies in scenario planning as it appropriates the concept of Bayesian networks, widely used in other areas of knowledge (artificial intelligence, geological studies, medical diagnostics, pattern classification, etc.), and bring it to the field of social sciences.


Download data is not yet available.


Arcade, J., Godet, M., Meunier, F., & Roubelat, F. (1994). Structural analysis with the MICMAC method & actors’ strategy with MACTOR method. In J. C. Glenn, & T. J. Gordon (Orgs.), Futures research methodology. Paris: AC/UNU Millennium Project.

Ben-Gal, I. (2007). Bayesian networks. In F. Ruggeri, R. S. Kennett, & F. W. Faltin (Orgs.), Encyclopaedia of statistics in quality and reliability. UK: John Wiley & Sons.

Charniak, E. (1991). Bayesian networks without tears. AI Magazine, 12(4), 50-63.

Duncan, N. E., & Wack, P. (1994). Scenarios designed to improve decision making. Planning Review, 22(4), 18-46.

Fischer, R. B. (2010). Desenvolvendo o conceito de redes bayesianas na construção de cenários prospectivos. Dissertação de Mestrado, Escola Brasileira de Administração Pública e de Empresas da Fundação Getulio Vargas (EBAPE/FGV), Rio de Janeiro, RJ, Brasil.

Godet, M. (1993). From anticipation to action: a handbook of strategic prospective. Paris: UNESCO.

Godet, M., & Roubelat, F. (1996). Creating the future: the use and misuse of scenarios. Long Range Planning, 29(2), 164-171.

Godet, M., Monti, R., Meunier, F., & Roubelat, F. (1999). A caixa de ferramentas da prospectiva estratégica. Lisboa: CEPES.

Gordon, T. J. (1994). Cross impact method. In J. C. Glenn, & T. J. Gordon (Orgs.), Futures research methodology. Paris: AC/UNU Millennium Project.

Heijden, K. (2004). Planejamento de cenários: a arte da conversação estratégica. Porto Alegre: Bookman.

Jensen, F. (1996). An introduction to Bayesian networks. London: UCL Press.

Kjærulff, U. B., & Madsen, A. L. (2005). Probabilistic networks: an introduction to Bayesian networks and influence diagrams. Recuperado em 30 de junho, 2009, de

Lacerda, W. S., & Braga, A. P. (2004). Experimento de um classificador de padrões baseado na regra naïve de Bayes. INFOCOMP Journal of Computer Science, 3(1), 30-35.

Lowd, D., & Domingos, P. (2005). Naïve Bayes models for probability estimation. Proceedings of the International Conference on Machine Learning, 22, Bonn, Germany.

Marcial, E. C., & Grumbach, R. S. (2005). Cenários prospectivos: como construir um futuro melhor (3a ed.). Rio de Janeiro: FGV.

Marques, E. (1988). Prospec: modelo de geração de cenários em planejamento estratégico. Recuperado em 11 de abril, 2007, de

Miles, I. (2005). Scenario planning. In UNIDO Technology foresight manual (vol. 1, pp. 168-193) Vienna: Unido.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: network of plausible inference. San Francisco, CA: Morgan Kaufmann.

Pearl, J. (1999). Graphs, structural models and causality. In C. Glymour, & G. F. Cooper (Orgs.), Computation, causation and discovery. Cambridge, MA: AAAI/MIT Press.

Pearl, J. (2000). Causality: models, reasoning, and inference. New York, NY: Cambridge University Press.

Perestrelo, M. M. M. C., & Caldas, J. M. C. (1998). Instrumentos de análise para utilização no método dos cenários: I – análise estrutural. Lisboa: Dinâmia.

Rish, I. (2001). An empirical study of the naïve Bayes classifier. Proceedings of the International Joint Conference on Artificial Intelligence, 17, Seattle, USA.

Ritchey, T. (2002). General morphological analysis: a general method for non-quantified modelling. Recuperado em 20 de abril, 2007, de

Ritchey, T. (2005). Futures studies using morphological analysis. Recuperado em 20 de abril, 2007, de

Sandnes, F. E., & Sinnen O. (2004). Stochastic DFS for multiprocessor scheduling of cyclic taskgraphs. Proceedings of the International Conference on Parallel and Distributed Computing: Applications and Technologies, 5, Singapore.

Schnaars, S. P. (1987). How to develop and use scenarios. Long Range Planning, 20(1), 105-114.

Schwartz, P. (2000). A arte da visão de longo prazo: planejando o futuro em um mundo de incertezas (4a ed.). São Paulo: Best Seller.

Wack, P. (1985a, September-October). Scenarios: uncharted waters ahead. Harvard Business Review, 63(5), 72-89.

Wack, P. (1985b, November-December). Scenarios: shooting the rapids. Harvard Business Review, 64(6), 139-150.



How to Cite

Fischer, R. B. (2016). New Approaches for the Use of the Classical Tools of Scenario Planning. Future Studies Research Journal: Trends and Strategies, 8(1), 141–174.